ここから検索条件フォームです
検索フォームを表示する

設置形態

課程区分

学校名

学部・研究科名(短期大学の学科名)

学科・専攻名

キャンパスの所在地

                  学位に付記する専攻分野の名称

                  実施している入試方法(複数選択可)

                  データサイエンス研究科(修士課程)

                   
                  ここから学部・研究科等のメニューです ここから大学のメニューです
                  お気に入りリスト一覧へ
                  ここから学部・研究科等の情報です

                  教育課程

                  学科・専攻等の名称

                  学科・専攻名修業年限取得可能な学位
                  データサイエンス専攻 2年 修士(データサイエンス)

                  教育課程編成・実施方針(カリキュラム・ポリシー)

                  (ア) 修士レベルのデータサイエンスの基礎的能力を修得させる。より具体的には次の能力である。
                  ・大規模データを保存・加工・処理するための専門知識とスキル (エンジニアリングスキル)
                  ・データに内在するランダムネスを処理・測定するための専門知識とスキル (アナリシススキル)
                  ・領域の課題ごとに適切な分析モデルを構築するための専門知識とスキル (モデリングスキル)
                  (イ) 実際の問題を解決するための実践力を身につけさせる。より具体的には次の能力である。
                  ・各領域の専門家と意思疎通し、適切な分析課題を設定するためのコミュニケーション力
                  ・分析結果を分かりやすくし説明し、意思決定につなげるための提案力
                  ・意思決定を実行に移すための実現力
                  上記の能力のうち一部のみを磨くことに特化するのではなく、データに基づく価値創造の過程全体を担う力量を高める。

                  教育課程の特色(履修モデル、カリキュラムマップ等)

                   本研究科では、データエンジニア科目、データアナリシス科目、そして両者を基盤とするモデリング科目を学びます。
                   また、プロジェクトマネージメントや領域固有のモデルについても学びます。そして、課題研究を通じて、実際のデータに触れ、一連の問題解決の流れを体感することで、知識だけではなく、問題解決の成功体験を経験し、生きたデータかた実際に価値創造を行えるようになります。


                  ●M1(1年次)…修士レベルのデータサイエンスの基礎的能力を身につけます。様々な領域知識と分析例を学びます。
                             
                  ●M2(2年次)…社会的な問題の解決に向けて貢献するような修了研究をします。本学データサイエンス教育研究センターが企業や自治体、大学等と行う共同研究に参加します。

                  授業科目

                  授業の方法・内容

                  年間の授業計画

                  シラバス等

                  学生が修得すべき知識及び能力に関する情報

                  学位授与方針(ディプロマ・ポリシー)

                  (1) データエンジニアリングとデータアナリシスの高度な専門知識とスキルを修得した上で、モデリングの方法論を修得し、データサイエンスに関する高度な知識とスキルを備えている。
                  (2) 課題の発見、データ収集・前処理、モデルの決定・最適化計算、結果の解釈、そして意思決定につなげる一連の過程を自らのイニシアティブで実施でき、価値創造に貢献できる。
                  (3) データ利活用の現場で相互補完的な専門性を有する仲間と協力して、組織目標を達成するための核となる基礎的経験を積んでいる。
                  (4) データ駆動型価値創造社会に貢献する人材として、データ利活用の社会的影響等を内省できる基礎的見識を備え、修了後の実務経験の中でデータに基づく意思決定に適切に反映できる。
                  (5) 修了後の現場での課題に応じて、自律的に研究を進めることができ、多種多様な領域で価値創造するための適応力を備えている。

                  学修の成果に係る評価の基準

                  卒業・修了認定の基準

                  転学部・編入学等の可否、費用負担

                  転学部不可
                  編入学不可

                  転学部・編入学情報補足


                  専攻分野

                  専攻分野
                  商学・会計・ビジネス
                  社会学
                  数学・情報科学・統計学
                  生物学・生化学・バイオ
                  電気・電子・通信工学
                  情報工学・コンピューター
                  航空工学・宇宙工学

                  その他専攻分野